Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence.

نویسندگان

  • J Chabry
  • S A Priola
  • K Wehrly
  • J Nishio
  • J Hope
  • B Chesebro
چکیده

Conversion of the normal protease-sensitive prion protein (PrP) to its abnormal protease-resistant isoform (PrP-res) is a major feature of the pathogenesis associated with transmissible spongiform encephalopathy (TSE) diseases. In previous experiments, PrP conversion was inhibited by a peptide composed of hamster PrP residues 109 to 141, suggesting that this region of the PrP molecule plays a crucial role in the conversion process. In this study, we used PrP-res derived from animals infected with two different mouse scrapie strains and one hamster scrapie strain to investigate the species specificity of these conversion reactions. Conversion of PrP was found to be completely species specific; however, despite having three amino acid differences, peptides corresponding to the hamster and mouse PrP sequences from residues 109 to 141 inhibited both the mouse and hamster PrP conversion systems equally. Furthermore, a peptide corresponding to hamster PrP residues 119 to 136, which was identical in both mouse and hamster PrP, was able to inhibit PrP-res formation in both the mouse and hamster cell-free systems as well as in scrapie-infected mouse neuroblastoma cell cultures. Because the PrP region from 119 to 136 is very conserved in most species, this peptide may have inhibitory effects on PrP conversion in a wide variety of TSE diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of interactions and interconversions of prion protein isoforms by peptide fragments from the C-terminal folded domain.

The formation of protease-resistant prion protein (PrP-res or PrP(Sc)) involves selective interactions between PrP-res and its normal protease-sensitive counterpart, PrP-sen or PrP(C). Previous studies have shown that synthetic peptide fragments of the PrP sequence corresponding to residues 119-136 of hamster PrP (Ha119-136) can selectively block PrP-res formation in cell-free systems and scrap...

متن کامل

PrPSc-like prion protein peptide inhibits the function of cellular prion protein.

Mice lacking expression of the prion protein are protected against infection with prion disease. Neurodegeneration in prion disease requires the formation of the abnormal isoform of the prion protein (PrP(Sc)) from host prion protein. Therefore expression of normal host prion protein is necessary for prion disease. In the present investigation, it was demonstrated that PrP(Sc) and a peptide res...

متن کامل

Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines.

A central aspect of pathogenesis in the transmissible spongiform encephalopathies or prion diseases is the conversion of normal protease-sensitive prion protein (PrP-sen) to the abnormal protease-resistant form, PrP-res. Here we identify porphyrins and phthalocyanines as inhibitors of PrP-res accumulation. The most potent of these tetrapyrroles had IC50 values of 0.5-1 microM in scrapie-infecte...

متن کامل

Regulation of aggregation behavior and neurotoxicity of prion neuropeptides by platinum complexes.

Prion diseases belong to a group of infectious, fatal neurodegenerative disorders. The conformational conversion of a cellular prion protein (PrP(C)) into an abnormal misfolded isoform (PrP(Sc)) is the key event in prion disease pathology. PrP106-126 resembles PrP(Sc) in some physicochemical and biological characteristics, such as apoptosis induction in neurons, fibrillar formation, and mediati...

متن کامل

Trans-Dominant Inhibition of Prion Propagation In Vitro Is Not Mediated by an Accessory Cofactor

Previous studies identified prion protein (PrP) mutants which act as dominant negative inhibitors of prion formation through a mechanism hypothesized to require an unidentified species-specific cofactor termed protein X. To study the mechanism of dominant negative inhibition in vitro, we used recombinant PrP(C) molecules expressed in Chinese hamster ovary cells as substrates in serial protein m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 73 8  شماره 

صفحات  -

تاریخ انتشار 1999